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INTRODUCTION

This is the third quarterly progress report prepared for the
National Aeronautics and Space Administration under Contract No.
NASw-986. The body of this report is qualitative in nature.
Preliminary versions of detailed technical reports are given as
appehdices° The final report will contain a complete and
detailed description and summary of the work carried on under the
contract.

The objective of the research being carried out 1is the
development of methods by means of which bounded phase-coordinate
controllers for large flexible launch boosters can be realized.
The areas for investigation are the determination of the zero
cost sets, the determination of extremal controls, and compu-

tational procedures for finding optimal controls.
SUMMARY OF ACCOMPLISHMENTS

The main effort during the third quarter was applied to the
implementation of Neustadt'!s algorithm on an analog computer for
thensdlution of the bounded phase;coordinate problem. It was
found that the algorithm could be set up on the analog fbr the
time-optimal problem. This is reported in Appendix A. However,
because the constrained subarcs are singular, the method failed when
the phase constraints are added. The detalls are supplied in

Appendix B.



The state of work on the general problem 1s outlined in
Appendix C with suggestions for work for the next quarter. The
analysis of Appendix A from the Second Quarterly Report has been
revised and is submitted as Appendix D, This work was presented
in a seminar at the National Aeronautics and Space Administration
Marshall Space Flight Center, February 2-4, It will appear in
"Progress Report No., 7 on Studies in the Fields of Space Flight
and Guidance Theory" issued by the Astfodynamics and Guidance

Theory Division at Marshall.
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MECHANIZATION OF NEUSTADT'S ALGORITHM
FOR TIME-OPTIMAL CONTROL ON AN ANALOG COMPUTER

by
D, D. Fairchild

The technique which is described allowe "on line' simulation of the
time-optimal regulator by adapting Neustadt'is algorithm to analog
computation., The procedure 1s an out-growth of attempts to

realize bounded-phase coordinate controllers.

THE PROBLEM
Given the equations of the system 1in the form of an nth
order vectof differential equation

x = A(t)x + B(t)u(t) (1)
we must find a control vector u*(t), of r components, which steers
the system from an initial state X at t = 0, to a final position
in which all components 6f X are zero, with the finite time of
transit T being a minimum. The additional proviso that

Ju £)] < 1; J=1,2,...m
must be added to set the problem,

NEUSTADT*S STRATEGY
The variation of parameters formula gives

x(t) = X(t)x, + X(t)Jth"l(s)B(s)u(s)ds (2)

as a representation of the solution of equation (1). The matrix
X(t) 1s the matrix solution of the homogeneous part of (1) which
becomes thekidentity matrix for t=0, If x(to) = 0, multiplying
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equation (1) by X'l(to) yilelds the formula
to -1
-x, = j— X" (s)B(s)u(s)ds. "~ (3)
0

This may be interpreted as producing the set of initial conditions
X, from which the origin can be reached in to seconds by appli-
cation of control function u, Taking the dot product of (3)

with a vector n, yet to be determined; we have

-n e xg .,_fho n - X”‘l'(s)B(s)u(s)dse (4)
0
Ry selecting
= Qo -1 '
u(s) = Sgn[n o X (s)B(s)] (5)
the expression given iIn (4) i3 made maximum for all 1. The time

optimal regulator for normal systems is assured (Ref 3) for a

particular value M = M _, To obtain Neustadtts relationship,

0
it is necessary to define the following:
‘ t
Z(t,n) =j' x1(s)B{2) sen[n - x"1(s)B(s)]ds (6)
O .

Making use of {€), equation (&) may be written
- e X, =1 e Z(t,n), when t = too (7)
Expression (7) may be written as

o =1 - [2(t,,m) + x,]- (8)




Equation (8) is satisfied by the ncorresponding to the time
optimal regulator for the initial condition Xy Neustadt con-
Sidered the function
f(t,n;xo) = n.[Z(z,n) +4 Xol” and proved the following pro- (9)
pertiesg
a) f(tgn;xo) ig continucus in t and M, and
b) 'f(t,n;xo) is strictly increasing with t for a fixed m,
Further insight to the significance of {(3) can be gained by
graphical arguments, Using (3) it is possible to aonstruct a
graph of the set of all initial conditions from wnlch the origin carn b

1

reachad 1n t seconds. BSuch a graph is shown in Fig. 1 fer t, <
. SN t3 < t,» Selecting M, arbitrarily, the corresponding Za(tgn)

i3 constructed in Fig. 1. Examination of {9) reveals that
f(t,ﬂ;xo) may be reduced to zero by either of two means:*
a) causing the vectors N and [Z(t,n)+xo] to form a right angle,
or,
b) reducticn of the vector [Z{t,n)+xo] to zeru,
Returning to Fig, 1., the wactor Za’tgq) + xo] ig congtructed for
the particvlar ﬂg shown., It is apparent that the angle between
| n, and [Za(t,n) + x,] (1.e., angle 0) will be 90° for some time
| tl < ta < t3° Thus the first of two conditions necessary for (9)

to be zero has been illustrated. It can ve further observed that

*
The discussion which follows assumes that £{t,n;x_ ) is initially
negatilve, which is equivalent to saying that the aﬁgle between

X, and 1 is greater than 9009,




the projection of [Za(t,n)+ xoj on na will be negative for t < ta’
and will become positive for t > ta for a fixed X

The second condition (i.e., reducing [Z(t,n)+xo] to zero) is
only possible when t = t_. 1In addition, Z(to,n;xo) must be
coincident with negative X which fixes the corresponding ﬂo.

The vector cz(t,n)+xo] will be nonzero for all t # ty
and the projection of N will be outward or positive for all t > to.
Therefore t = to is the upper bound of the zero crossings of
f(t;n,xo) considered as a function of t. In other words, t = to
is the upper bound of w where w = {T | f(T;n;xo) = O}, and further
to € W,

Plots of f(t,n;xo) versus time for several values of 71,

as obtained from the preceeding graphical argument, are given in

Fig. 2.

IMPLEMENTATION
Utilizing a circuilt which permits maximizing Tew, the
optimal controller corresponding to a given initial condition
can be obtalned.
The Bang-Bang or Coulomb Friction Circuit driven by
f(t,n;xo) can provide an output of the form
V(t,n;xo) = eO(BB) = k, for f(t,n;xo) < 0,

(10)

e =0 for f£(t,n;x_.) > O.
O(BB) ? e




By driving an integrator with the output of the Bang-Bang circuit,

the output voltage of the integrator wlll be of the form

U(t,n3x. ) = e = kt, for t < T
AR s O(j_n‘c.) s >

(11)

1l

0 + kT, for t > T;

where T is a particular time such that f(T,n;xo) =0, Tor a
glven initial condition x_  and a trial value 1, (11) is only
a function of time. By changing W and repeating the sclution,
it 1s possible to obtalin a set of curves U(t,n;xo) which are a
function of the time at which f(t,n;xo) is zero, A graph of the
set of curves U(T,n;xO) is shown in Fig. 3. To generate U(T,n;xo)
with the computer, the form of (9) was modified to

£t,m5x,) = n(t) -« x(t), (12)
which is shown equivalent to Neustadts expression by the following
argument.

If n{t) = [X°(t)]™In_, then

O)

t
1)+ x(6) = D)1 - [k(E)x, + K(6)] X (e)B(s)uls)as] (13)

LaSalle (Ref 3) proves the optimal steering function to be of the

form

u(s) = sgnln(t) - x(t)xt(s)B(=) ], 0¢s<t,

—



which is equilvalent to
u(s) = sgnln, * X"1(s)B(s)]. | (14)

Substituting (14) into (13) we have

, _ ta )
n(e) « x(t) =7ay - [xg + jox (s)B(s)sgnfn, * X ~(s)B(s)lds, (15)

but
t

[ xHem(s) senln, + X7 (2)B(s)10e = 2(6,05x,).
Therefore (15) can be expressed as

n(t) * x(t) = n, - Ixg + z(t,n;xo)], which (15)
demonstrates that E(t,n;xo) = f(t,n;xo).

Advantage was taken of the repetitive solution capabillities
of the REAC-CL400 analog computer. In this mode the circuitry
functions such that during one half of a square wave cycle the
integrator capacitor terminals are "shorted' to discharge the
capacitor, and during the other half cycle the integrator is
placed in "Operate". Thus the computer re-solves the program
at a frequency determined by an external square wave generator,
The repetitive solutions are then displayed on an oscllloscope,
such as the Electromec large-screen oscilloscope. By varylng
the initial values of nj(o); j=0,1,2,...m, a continuous display
similar to that of Fig. 3 is available. The effect of each new
setting of the elements of N is immediately apparent and maximization

of w(T) is facilitated with a minimum of interpretation required.




APPLICATION

The intended application of Neustadtfs algorithm was in
conjunction with the "soft bounded" phase coordinate problen,
more properly termed "the approximate linear time optimal control
process with bounded phase coordinates." The problem statement
given in (1) is still applicable with the additional requirement
that Xj(t)’j = 1,2,...m remain within a gilven constraint during
its response.

The equations defining the specific case studied (i.e., an

augmented harmonic oscillator) are

X, = F(xg)
X, = X,
ke = -x; t 3gn nz(t)
My = 0
=0
A, = -n, -7 OoF(x3)
2 1 O 5% £
2
2
where F(xz) = %;(x2 - 3)°, if x5 > 3
= 1
o 1 |xy] < 3
=1(x,+4)° if x, < %
2 22 3 2_2'




The parameters subscripted with a zero result from augmenting the
system to permit enforcing the "soft boundary" (Ref 2). The
augmented system was believed to be normal (Ref 2), however this
assumption later proved to be invalid. The systems non-normality
was 1nitlally indicated by the potentiometer settings required

to maximize the algorithm (i1.e., no had to be zero which
corresponds to the unbounded case). The level of confidence in
these first indications was improved when attempts to determine

the requlred initial values of the elements of 1 using grid networks
were also unsuccessful. Increments of I%G over a range from 1 to 10
were used in the grid networks search. The phase coordinates of
vne state vectors were plotted for each trial in the grid network.
No trial combination within the grid network resulted in switching
or tracking along the boundary. Further refinement of the grids
was not considered worthwhlle. These simulating results warranted
further analytic studies which proved that the coordinate n(t)
vanished for a finite time whlle tracking along the boundary,
leaving the controller undefined and non-extremal., Having
established that the controller 1s undefined over a portion of the
swilitching boundary invalidates the mechanization scheme belng used.
It i1s interesting to note that the technique "recognized" this
condition by only providing data for the unbounded case. Recall
that normal systems are required to have no component of

v X'l(t)B(t)] vanish on any interval, with 7 # 0 (Ref 3).




A detalled treatment of the soft bounded problem will be
left to those more qualifled, since the applicability of the:
technique under discussion is void for non-normal systems (Ref 1).
In implementing the system of (10) it was observed that the
solution obtained with'no = 0 was the correct solution to the
unbounded problem. This result was anticlipated since the
systems”equations reduce to the unbounded case in that configuration.
Several initial conditions of the state variables were investigated,
and the required initial conditions of the adjoint vectors were
obtained. It should be observed at this point that the selection
of initial conditions of the state vectors was conditioned by
.he particular system of equations, and a decire to compare the
cesules cotained with those obtained by Russell (Ref 4) for the
L. syste .. +he conditions investigated were in the range

1< xl(o) < 2, and

x,(0) = 0.
It is hoped that additional results with xl(o) >~ 2 and
XE(O) # 0 can be investigated subsequent to the writing of this
memo ,

The analoz computer program used to simulate the set of
equations of (10) and implement Neustadtis algorithm is shown in
Fig. 4. Two examples of the phase plane plots are gilven in Fig. 5.
Fofxthe examples of Fig. 5, the time varlations of individual

parameters are shown in Filg. 6.
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CONCLUSIONS

The conclusions reached in thils study are as follows:

1) the technique is not applicable to the bounded phase

coordinate problem as that problem is presently stated,

2) "on line" applications do exist for the unbounded phase

coordinate problem, and

3) where applications exist, complete mechanization of the

gsearch procedure (i.e., removing the operator from
the loop) should be considered. Open loop versus closed
loop automation also has interesting implications,

The results demonstrated that on line time optimal control
could be obtained for possibly higher than second order systems when
the plant dynamics are slow, as in chemical reactor control problems
where one or two minutes can be spent in obtalning a feasible
solution. Also, in such applications a digital computer (of
perhaps the Honeywell 200 class) could be programmed to seek the
minimum, and thereby completely mechanize the search procedure,

Further, the method as 1t stands could be used to obtain
feasible solutions as needed in training the feedback controller

of the logic net mechanization [Ref 57, or other such applications.
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ANALOG COMPUTATION OF TIME OPTIMAL CONTROL

FOR APPROXTMATE BOUNDED PHASE-COORDINATE SYSTEM

by
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ARBETRACYT

The synthesis method for approximate bounded phase-coordinate
time optimal control [Reference 1] was studied on an analog
computer. The results indicated that the method cannot be
directly implemented. Recommendationsare made for further
study in connectlon with the singular arc.

INTRODUCTION

As shown in Reference 1, the subject problem can be gtat,
4t follows:

Consider a linear control process described by the syoiow
oi" differential equations

x = A(t)x + B{t)ul(t),
where the coefficient matrices A(t) and B(t) are composed of
known continuous functions on the time interval [to’tlj“ Find
an aliowable controller u(t) which steers xu(t) from x_ at t_
to a prescribed compact target set T, with x&(tl) < B and

tl-to a minimum, where

£
%o (t)) = ftl F(x,(t))at,

o}

"{x) = convex continuous differentiable function such that

= 0, 1if x remains within a given constraint set A;
F(x)
# 0, otherwise.
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To solve the problem, the proposed method [fctr, 1)

considers an augmented #n+t2 sgystem ol equetlonc

) Fq@ = F(x)

T x = A{t)x + B(t)sgn {n B{t)}
o

i 2y

\n = -7 A(t) = no éigi;l':

) - - ) .
with x (to) = 0, x(to) = X, and 1 (to) < 0. Let
55 B (XO,X)‘
ﬂ = (nb;n),
and f = ﬁr); - U.J’
where
B
0
a =|0
0

Then the system S) could be solved on an analog computer by
means of modified Neustadt's algorithm [Reference 29%.
EXPERIMENTAL RESULTS

Two examples were studied on the analog computer:

(a) Pure inertia system x; =u with A = Iill<3 0.5
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1

X

01 o O I !
A 2&3 , B —[ljl P X = X? = )'(] )
O.5(x2 - 0.5)2 for x5 2 0.5
F(x) =¢g Ix,1 < 0.5
0.5(x, + 0.5)° x, < =.05

Target = 0
0]}.

Various initial conditions x(0) and different values of B were
considered.on the computation. A set of typlcal phase-—coordinate
trajectories with x(0) =[%'5], B = 0.5, and various trials of
fj(0) is shown in Figure 1. Note that the trajectory which
supposedly corresponds to a time optimal* solution does not

pass through the origin, and the ﬁrajectory which ends at the
origin does not corresbond to a time optimal solution. Moreover,
there is no indication showing the effectiveness of the phase~

coordinate constraint.

(b) Harmonic oscillator system il +x, =u with A = lill < 0.5

*Ai time optimal solution [Ref. 2] is determined zg follows: Select
7°(0) and {0} cuch that LML <0 Tvsomtete Che oo

L

,‘\ .
until ©(T) = 0. Thus for ench cet of n°(0), there is & corres-

ponding T. Conditions that give max., T correspond to a time
optimal solution.



F(x) and the target are defined in the same forms as shown
in example (a). FPFigure 2 shows a set of typical phase coordinate
trajectories with B = 0.5. Note that for the case of x(0) ={2éo],
the time optimal trajectory with the bounded phase-coordinate
constraint 1s identical to that without the constraint. For
x(0) =[}67], the trajectory which supposedly corresponds to a
time optimal solution does not pass through the origin. The
trajectory which ends at the origin, however, 1s not only non-
time optimal, but also corresponding to an improper sign of F{x).
The latter violates the requirement of convexity of F(x) in the
derivation of the computational methoc .
EXPLANATION

The fact that the computational methou could not ve implemented
directly can be explained by an analysis of a numerical example.

Cosctlder the pure inertia system as given in the previous
section. Since x°(0) = x2(0) = 0 and 5°(0) < 0, then

(o) = Fl,_o = 0.5n°(0)} + 1.5m (0) < 0
implies 7,(0) < -|5°(0)[/3 < 0. Since 35,

[}

0, hence nl(t) is

a negative constant.
OF “(x

= 0 80
X

When ngl < 0.5, the function F(x) = O and

that ﬁe = -m; > O. Since u(t) = sgn ne(t), hence nE(O) <0
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for otherwise the resulting u(0) = +1 would steer the system

away from the origin., Thus
n2(0) =-negative constant and
1,(0)
Since’xg(t) = -t for u(t) = -1, the tﬁ?Jectory will arrive

(!

posltive constant.,

at the phase‘coordinate boundary Xy = -0,.5at t = 0.5. This is
illustréted in Figure 3. Note that ne(t) cannot change sign for
t < 0,5, If it would, then the switch of the control occurred
too early so that the trajectory would not be able to pass through
the origin without crossing the other boundary X, = 0.5 and.folléwed
by at least two more switches of control.

Let nz(t ) = 0 at some t; > 0.o. Then ng(t) is a parabola
bending downward for 0.5 < t <, since F(x(t)) = 0.5Tx,(t)+0, 592

- 0.5[-t+0.512,

jt,. L at = -0.50-t+0.51
0.5 2
and nz(t) = ]nl(o)l - o.5|n°(o)|-[-t+o.5]2 for 0.5 <t < &g,
For t = t; +.¢, where ¢ 1s a small guantity, ne(t) > 0 and hence

u(t) = +1. Fince x,(t) = +t for u(t) = +l§;

L
ra

and my(t) = Iny(0)] + 0.5 [n°(0) }{rt + O. 51 - 6,40, 51%-1-t,+0.51°)
which indicates that n2(t) is now a parabola bending upwards for

dt = +0.5[t + 0. 5] - 0,50t +0. 592

t > tl. Since ng(t) cannot change sigg thereafter, hence the
trajectory will not pass through the origin unless the switch

of the control occurs on the switching curve and in which case




the trajectory with the bounded phase-coordinate constraint is
identical to that wlithout the constraint.
CONCLUSION

From the above observation, it 18 concluded that the proposed
method [Ref 1] cannot be directly implemented. It is reasonsbj.
Lo conjecture, however, the method ts valld if the parabolic
portion of 1, 18 tangent to the horizontal axis (Figure 4) such
thet g,0t0 « 45! = 0 for ty <t Lt, and t, < t,. But this
leaves uit) = sgn ngit) undefined on t ¢ [tl,tgl which is
cguivalent to the introduction of a segment of singular arc.
Far this cazae, % connal De rexdily computed 2nd hence the modified
Neustadt's algorithm [Ref. 2] does not spply. Further study

e behavior of singetoe ape S8 thoegpgetove pecommended

REFERENCES
1. Second Quarterly Progress Report to NASA, 6 January 1965,
Appendix A.

2. This issue of Quarterly Progress Report to NASA, Appendix A.
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A SUMMARY OF BOUNDED PHASE-COORDINATE
CONTROL PROBIEMS WITH INTEGRAL COST

By E. B, Lee

In section 4) of Appendix D a short discussion of bounded
phase-coordinate problems is given. The motivation for this
was the use of certain sufficiency conditions and the usual
method of handling bounded phase-coordinate problems by soft
constraints introduced through a penalty function. It was later
realized that the method used to handle the bounded phase-
coordinate time-optimal problem in that appendix was a different
method, involving the use of a transversallity condition. The
use of the transversality condition to obtain a soft constraint
appears to be a new way of handling this problem and has not been
completely developed and evaluated. It is the purpose of this
note to indicate the extent to which the theory for the integral
cost criterion can be developed along the lines of the previous
theory for time-optimal control with the bounded phase-coordinate.

As in section 4 of Appendix D, consider the linear control
process

£ x = A(t)x + B(t)u, x(to) = X, uefl, satisfying conditions
of section 2 of Appendix D.

The cost functional of control is

t
Clu) = e(x(ty)) + Itl [£o(x(t),t) lat,
(o]




where t, is a fixed time >t  and the real functions £o°(x,t) and
h® (x,t) are continuously differentiable and f°(x,t) is a convex
function of x for each t. g 1s assumed to be convex in X.

The problem of optimal control is to choose an admissible
controller u(t) on [to,tll so that the response of £ moves from
x, at t  to a target set GCR? at t,, and minimizes C(u) with the
entire response xu(t) contained in the closed convex restraint
set A,

As before we introduce the convex differentiable function
F(x) satisfying the conditions:

F(x) > 0, if x ¢ A,

=0, 1if x € A,

It is at this point that we depart from the previous theory,
which was to add F(x) by means ot a LagrangeMultiplier A to the
integrand of thr integral part of the cost functional and then
argue that if A is sufficiently large the bound on the phase
constraint is approximately enforced when C(u) is minimized.
Instead we prescribe a bound B and require

j:l F(x(t))dt < B.

o
Of course, one way of handling this added lnequality is to use the
method of Lagrahge multipliers, which leads back to the original
formulation., We wish to prove existence, as well as glve necessary
and sufficient conditions, so we will not resort directly to such

methods.
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Let x° = P(x),

and )L fo(x,t) + h°(u,t),

with x°(to) = 0 = xn+1(to), We augment the system £ by adding

these two equations obtaining the system

~ )Q(.b = F(X)

x = A(t)x + B(t)u

x o pe(x,t) + no(u,t)

. o~ o~ +1
with initial data X = x(t.) = (x°(t_), x(t.), xM (t,))

xn+1 )

= (Osxoyo)s X = (ng5 o
The soft bound problem is to find an admissible steering

function u(t)cQ on [to,tl] steering X(t) from §5 to the target

set G = {x°,x,xn+1| 0 <x® < B, xeG, O wan+l

n+1

(6)) + g(x(t))).

Define the set of attainability K(tl), in variables
n+1)

< e} with minimum

(x°,x,x to be the collection of end point ;(tl) of responses
;(t) of S corresponding to all admissible controllers u(t) on
[to,tl] with ;(to) = ;go An admissible controller u(t) is a
measurable controller belonging to the compact set Q.

An adjoint response corresponding to an admissible controller
u(t) on [to,tll is n+2 row vector satisfying the differential

system

N, ® constant < O

+1
i=onale) - & (x(8)” - m g 2 (x(t))

A, = constant < O, on [to,tlj where x(t) is the response of

£ corresponding to the controller u(t).
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Define an admissible controller u(t) on [to,t1] to be
extremal if the response X(t) of S corresponding to u(t) has an
end point x(tl) contained in the lower boundary (in both x° and

[
n+l) of K(tl). Further, define an admissible controller u(t)

X
on [to,tl] to be a maximal controller in case there exists a
nonvanishing adjoint response ﬁ(t) such that
n(t) B(t)u(t) = Max (m(t)B(t)u},
ue

a.e. on [to,tl]V

It has been established that E(t1) 1s a compact subset of
RAF2

appears that the lower boundary in x° and xn+1 is a convex
surface so that the extremal and maximal controllers are the
same, giving us a way of choosing optimim controllers. Further,

it 1s expected that theorems similar to the remaining theorems

of Appendix D will be obtained.
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(REVISED)
* AN APPROXIMATION TO LINEAR BOUNDED

PHASE COORDINATE CONTROL PROBLEMS¥*
E. B, lee '

1. Introduction .
In many control problems both restraints on the magnitudes
of the control variables and various system variables may occur,
Certain results [1,2,7] are available for the determination of
optimal controllers for some classes of Iinear and nonlinear -
systems involving such restraints. These results take the form
of necessary sufficient conditions for optimal control dut
not both, and are therefore only a partial solution to even
the thecretical problem, leaving much to be desired in the .

way of a practical solution. To use the necessary or suffi-

Aatr Wiw i lea e - e e em

cient conditions for synthesizing an optimal coqtrbller it
1. necessary to solve a two-point boundary value problem in
terms of a number of free parameters and multipliers where .
the number of parameters is not even known as well as certaln
Jump conditions [2,7]. A backing out procedure [9] is also
avallable if one is interested in flooding the domain of
controllability with responses and then keeping track (storing)
of the corresponding control magnitude for each such point, i
We here offer a procedure which has several advantages.u,*
aver the above schemes, but 1s only an approximate solution.
Its main advantage 1s that no discontinuities will be encoun-
tered in the adjoint solution which determines the optimum
controller and therefore the resulting two point boundary. _
" value problem may'be more readily solved., The results provide
both necessary and sufficlent conditions, as well as existence,

*Prepared under contract NASw-986 for the NASA. : .
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for the approximate problem.

The analysis is limited to linear control processes as
described by the differential system .

£) x = A(t)x + B(t)u(t).

The coefficient matrices A(t) and B(t) are composed of known
continuous functions on the time interval [to,tll. The con=-
troller u(t) is to be chosen from a set Q:[ujli.l; J=1,2,...m,
So as to steer the response, xu(t), of £) from an 1n1t15}

point x_ at time t_ to a prescribed compact target set GCRM

and it is required that xu(t) remain within a given constraint
set, A, during its entire response, Here R® is the n dimen-

sional real number space. ,

The problem of time optimal control, as considered in
the next section, is to find a controller u(t) which steers
xu(t) from x_ to G CA in minimun time, that is, minimizes
Clu) = t, - ¢, with x(tl)e G and xu(t) €A B, <8 &t
Later, in section 4, we discuss other optimum control cost
functionals.

There are certain difficulties involved when one
directly solves for this optimum controller. We shall there-
fore be content with solving the following apparently simpler
problem: Find that controller u(t) with graph in Q which
steers x,(t) from X, at t, to G at t, with x&(tl) < B and
t, - t, a minimum. x&(t) is defined below,

It is assumed that A 1s a closed convex set, (for
convenience we could even let A = {x|x'H x < ¢}, where H is
a positive semi-definite matrix and ¢ = constant > 0.) Let
F(x) be a convex continuous differentiable function which is
such that ' o

F(x) #0 it x g A
= 0 if xe A

-
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Then defineT

t
(e) = [ R(x(e)at,
o

x°(t ) essentially measures the excursions of the responae
x,(t) to a controller u(t) outside of the region A during the
time interval [t , t;]. "By keeping xu(tl) small theresponse
xu(t) is restricted to stay close to or within A. The above
minimunm time optimal control problem 1s approximately solved
by finding a controller which steers xu(t) = (x%(t)x (t)) from
(O,xo) to G = {x°,x|x ¢ G, 0 < x° < B} in the minimum time
interval ¢, - t, if g > 0 1s suffi ciently small,

In the next section we give necessary and sufficient
conditions for this approximation problem using the time
«ptimal criferion. Section 3 contains an exampie and section
4 is a discussion of the approximation problem for other cost
functionals. |

e. The necessary and sufficlent ccnditiens for the approximate |

linear time optimal problems ,
We augment the system g by considering the equation system

t+There is, of course, some question as to whether such a
function F(x) exists for an arbitrary convex set A contained.
in RN, We now cite an example which shows that there are
such functions in,a number of interesting cases. Suppose.
= {x1, x2,,..x0||x2| < 1}. Then pick F(x)
= 1/2(x% - 1) 1r x2 > 1 ‘

=0 ar 2@l <1
= 1/2(x° + 1)% 1f x2 ¢ <1

Thus if only one coordinate (or a linear combination) 1s res-
tricted the problem is easily handled as 1in the example,

where F(x) is continuous and has continuous ‘partial derivatives.
Other A's can be approximately handled as in the example.
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8) #° = P(x)

= A(t)x + B(t) u(t)

obtained from :) by adding the equation for x° with x° (g ) = 0.

Here A(t), B(t) are bounded and continuous on Et sty ] and
F(x) is a convex function with F(x) = O for x € A ar(x)
is assumed to exist and be continuous everywhere.

. The set of attainability K(t,)C R™! 1s the collection
of end points % (t,) of responses iu(t) = (x3(t), x (%)) of
§ which initiate at (0,x,) at time t_ corresponding to all
(Lebsegue) measurable controllers u(t) which are such
that |wI(t)] < 1 on [t ,t,], for § = 1,2...,m. (Such
controllers are referred to as admissible controllers.)

In the following theorems we establish various proper-
cies for K(tl) and Bﬁ(tl) as required in synthesizing optimal
controllers.

Theorem 1 Consider the above system £) with initial point
x,, vestraint set 0, and set of attainability K(%,).

Then K(tl) is a nonempty compact subset of_Rn+1 in variables
(x°,X) with conyex lower surface (as defined below) for each

to<tl<m.

Proof K(t ) is nonempty since any measurable controller

u(t)c gives rise to an end point x (t e K(tl) K(tl)
is compact because the system x) satisfies the hypothesis
of the existence theorems of references &, and 8,

The lower surface’ of K(t) is where exterior normal

n+l vectors 1 to K(t) at points of BK(V) have their first

component n, < 0. We now show that if xl and x2 are points.
of K(t l) then the point ¥ = Xx + (1-x) .= (y° ,y),
0 < A< 1, is such that ' o




S e o ——— e+

D5
Yy = xﬁ(tl)
and

o [0 )

where ﬁ(t).= Py ul(iz) + Sl-x) u,{t) and ul(t) and uz(t) are
such that x (t1)=“x1arﬂ_=3g_,2 (Q=x2. The convexity of the
lower ”su‘.rf_ac.eL of K(t,) then follows because in order for
1t to be nonconvex it is necessary tnat there exist two
points X, X, on this lower boundary, with the property that
the point X X, + (1-2) 552 i1s below the set ﬁ(’cl) for some
0 < A <1, which will then be impossible. '

With u(t) = A ul(t) + (1-2) uz(t) we £ind that

xg(t1) = (b))%, + | o(t,)g"M(s)B(s)a
3(t,) =g 1xo+jt 2(t,)a™ (s)B(s)i(s)ds
o

A E(tl)xo -+ r'l m(‘cl)m'l(s)B(s)ul(a)dg
‘bc .

: "t '
#(10) o), + [ ale)a™(e)8(s)uy(e)as]
| ] S |

= A xul(tl) + (1-A) x (ty) -

Y2

Axy o+ (1-X) x5, = ¥

where g(t) 1s the fundamental solution matrix of ¢ with
m(to) = I. We also calculate

.
xg(t,) = ftl F(xg(t))at
(o]
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and 1 xJ (Ul) + (1-x) X2 (t ) for comparison. Since F(x)
is a con%ex function of § it follows that for 0 L A < 1,

Fxg(t)) = F(x xulm + (15x)xu2<t)) < Flx, (9))

+ (1) Rlx, (t))

Y2

and so

x2(t,) = jtl F(xz(t))dt = jtl F(x X (t) + (1-2) ' (t))dt
ut’l to “Tua £ u1 xtQ

o

n t‘t .
< [T FGry (8))at ¢ Jtl (1-0)F(x, (£))dt = 3°.
o : (o) : ..

Q.E.D.

i

We will now consider those controllers u(t) on [to,tll
which steer % (t) from x at t  to points xl contained in
the lower boundary of K(t ) (written 3K~ (tl)) Such controllers
will be called extremal and they will play a. significant part
in the selection of optimal controllers.

Let u(t) e Qont <t <5pean admissible controller ~
for the convex control process

£) %° = F(x)
" x = A(t) x + B(t)u(t)

with initial point x = (0,x,) at t If the corresponding
response xu(t) has an end point x(t )eBK (t,), then u(t) ’
is called an extremal control and X (t) an extremal respcnse o

on [t l]
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_ The adJoint response 1(t) = (n (t), n(t)) corresponding
to a controller u(t) is a row n+l vector satisfying the f

- differential system

N = -1 A(t) - ng %;I‘:-i (xu(t)).'

n, = constant Z 0.

where xu(t) 1s the response of g) corresponding to the controller
u(t). Define u(t) on Eto’t17 to be a maximal controller in

case there exlsts a nonvanishing adjoint response n(t),

No £ 0, 50 that n(t)B(8)u(s) = Max (n(t)B(t)u) a.e. on [t,,t ).

In the following theorern

and maximal controllers are the 'same.

it is shown that extremal

8
o

Theorem 2 Consider the convex control pfocesst

£) x° = F(x)

.

X = A(t)x + B(t)u(t)

with initial point x = (0, X ) at time t,. An admissible
controller u(t)C Q on [to,t ]’is eXuremal for ¢ If and only
if it is a maximal controller, that i8, if and only 1f_bhere
is a nonvanishing adjoint response n(t) of

A= o A(e) -y T (x,(6))

1, = constant < O

TThe necessary portion of this theorem follows from L., S.
Pontryagin's Maximum Principle (7). For completeness the
simple arguments to establish the necessary part are
presented,
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so that

- n(t)B(t)u(t) = Mzg {n(t)B(t)u} almost always on [to,tl] .
u

Proof Assume uﬂﬂa{to,tl] is extremal and so steers
X(t) from (0,x,) at t_ to X, € 3R™(t,) at t,. Choose 7i(t,) =
= (n,,n(%;)) tobe a nonzero vector normal to w directed into the
halfspace defined by ™ which does not meet ﬁ(tl). Note - - - . |
M, < 0. Then let 1(t) with ﬁ(tl) as above be the response of the
adjoint equation corresponding to the controller u(t).

The controller T u(t) = sgn{n(t)B(t)} defined for Sauc
t ¢ [t,,t)] 1s admissible and S . .

n(t)B(t)u(t) = Max {n(t)B(t)u}
uef oo

pe r - .
on .to,tll. | |
Let 7T, be an interval of total length € > O contained

nd = [to,tl] whereon o

& +n(e)B(e)ult) < Mig fﬂ(t)ﬁ(t)u] for soma\b*a o;:;,w
S o

For given § > O consider the modified controller
ue(t) = u(t) on & - T, : ‘, : ;

= ﬁ(t) on T, Co T o ] :f{ 1 -7‘A_;‘

+sgn {}=-1.1f {} <0 ST e
=41 4f {} >0 v o :-,? :
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and cealculate

aq(6)% Ao A
€ =7X_ + 9%
3T e (=4
and
Sﬂé%li = 7% + Nx, where ie refers to a response of

corresponding to the modified controller ue(t)._
Integration from t, to tl yields

() Feloy) = AEL,) = [ [ ace) + Bt Jrele)

ond

- ~, t
e )R(8) - Ale,) £(b,) = j L {[-n ate) + $E (x(62) Jx(e)

+ n(e)[A( (£)x(t) + B(t)u( £) ]- F(x(t ))}at for n, = -1. The w«/c—

:
i STRRARAE:

Combinlng terms and using the assumed continuilty for F and ,
5—-we easily find that

“ .’(_ §

ﬁ(tl)ie(tj) - ﬁ(tl)ﬁ(tl) > &6 e + o(e) for e sufficiently
small where o(e) corresponds to terms of higher than first
order in e, and:therefore for e suffiqien?ly small

1(t)x (tl) -n(tl)x(t ) >0, contradicting the construction
of §(t,) as the outward normal to R(t,) at xl.‘ | |

)
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Hence there exists no such interval Te, 80

n(t)B(t)u(t) = Mag n(t)B(t)u almost everywhere on J,.
© uE€
Conversely, assume that u(t) and corresponding response
(t) 0 are such that

n(t)B(t)u(t) = Max n(t)Bu
ueQ
a.e. on $ with n < 0. ILet Gi(t) be any controller in Q
with corresponding response xﬁ(t). If we calculate

:
d‘xu and %G as above,

“atc at
and then integrate from t to tl'using the assumed convexity
of F(x) we find that o N '

n(ty) X,(%q) z,n(tl) x5(ty) = n(ty )W
where W is any point of ﬁ(tl) Since |n(t.,)| # 0, .
and n, < O, the above inequality implies that X, (t ) is
contained in the lower boundary of the compact set K(tl)
with convex lower boundary and hence u(t) is extremal =

Theorem 2 1ndicates that to stay at a lower boundary
point we must continuously steer maximally in the direction
of the vector 7(t). This remark is summarized as a corollary.
Corollary 2.1 Let u(t) on [t_,ty ] be an extremal controller
for s, with corresponding response X (t) and adjoint response
7(t) so that,

n{t)B(t)u(t) = Max n(t)B(t)u
uell
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a.e. on [t _,t,]. Then on each subinterval [t 1]C [t ,t, 1,
u(t) is also an extremal controller with in(r)eaﬁ(¢).

" loreover 7N(T) is an exterior normal to X(t) at x(71).

Proof Replace tl by T in the proof of theorem 2 to obtaln
that .

n(r) x,(7) 2 A7) X5(r) = () w(v)

for all w(t) in K(t). From this inequality the conclusion
of the corollary can be drawn.

We next show that the set of attainability K(tl)
depends continuously on the parameter tl

Define the distance between a point p and a compact
set GCR" to be

d(p,G;) = Min |p-g|
geGl
and define the distance bétween two compact sets Gl’ and
G,C R® to be

d( sGp ) = Max{gax d(pl,Ge), Max d(pa,Gl)} Here'
1¢6; Pped, |

n

lpl = T Ip*l.
i=1 .

The set K( )C'Rn+l varies continuously with t2 if

given an € > 0 there exists a § > O so that for Ite-tll < 8»
) |

a(R(ty), K(ty)) < e R
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Lemma 1 Consider the system ¢ as above with attailnable set
A -t -~
K(tlk: Rn‘l. Then K(tl) varies continuously with tl { w.

Proof We need only show that each point x(tl) of K(tl)
is close to some point x(t ) of K(t ) and conversely. That
is, we need show that given €e> 0 there exists a 6§ > 0 so
that when [t; - t,] < & there exists x(t ) € K(t ) such
that Ix(tl) - x(t ) < ¢ for each x(t2) € K(t ) and con=-
versely. _
Let ul(t) be ‘an admissible controller on [to,tl+1] and
il(t) the corresponding response. For t; < £, £ t; +1
calculate '

t t
x2(t,) - x3(ty) = [ 2 F{xy(e))at - [ T Plxy(t))ae
t t,
o] ' Q P
and ,
-~ rbo g Syas"
%y (8) = %y (t1) = 0(ty) jt o(s)™! B(s)u, (s)as”
Q
B B gyl
- oty [ 1 e(s)THB(s)uy (s) Jas
. (o] . ,
+ [o(ty) -0(t,)] U«cl o(s)™* B(s)ul(zs)as]._
o) » L
So
, t2
x9(t,) - x3(tq) = jt F(x, (t))at
1l
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and

xl(te) - xl(tl) =‘¢(t2) f:a ¢(s)"1u1(s)ds' ,
1 _

+ [o(t,) - ¢(t1)][j':1 o(s)™! B(s)u, (s)ds
o)

Since A(t) is bounded and continuous on [t,,t,+1] 80 18

®(t) and therefore there exists a constant C, so that

le(t)] < ¢

and

|8(£)™| < ¢, on [t,,t+1]),

Also since B{s) has bounded contihuous elements bg(t) and
ul(t) is bounded amd measurable there exists the constant

C2 80 that

|f 1 ¢(s)-1 B(s)u (s )ds| < C, Integration is a
continu8us operation, therefore, given an € > 0 there exists

a s> o0 so that

£
]jtlF(xl(t))dt| <%

lj:l o(s)™* B(s)uy(s)ds| < §§; |

for |t-t | < & <1,
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Hence

Clxp(es) - X (8] < §-+ Cy =5 + ——C, = ¢

for [t, - t] < 8 < 1.

The other way we consider ul(t) = u(t) on [to,tl] where
u(t) steers to i(tl) and extend it to Eto,tl+1]_by_1etting
l(t) = u(t ) for t ¢ [tl tlrli " The above calculation is
then fepeated to find lx(t ) - x(tl)[ < e for lt,~t;1 <5< 1
and so K(t ) varies contlnuously with t,. :
Theorem 3 Coqsideﬂ the system z as above with initial data

ﬁo = (0,%_), compact restraint set n, and set of attainability .
K(t ). Loo the target set G = {x°,x] 0 < x 8, x € B} where

B> 0 is a constant and G is a compact set of Rni Suppose

bl e giinaion i

G meets the interior of K(t ), then there is a & > O such that G
.eets K(t ) for 1t - tli < 8. '

Proof Since @ meets the interior of K(t ), there is a point
D ¢(G Int. K(t )) and a ball neighborhood N(p) of radius

r > O contained 1n K(t,). Consider the hyperplane x° = p°-r/2
of Rn+1 and in this plane pick n+l independent points xl,
i2...in, Xn+1 of the boundary of the ball N(p), all. equally
spaced. Let xl(t), . (t),...x (), n+l(t) be responses
of ¢ with initial data xo = (O Xy ) and corresponding to =
controllers ul(t), 2(t),.. Q+l(t) ty < t <ty +1, which
are such that x (tl) = xl,... n+l(tl) X1+ Plck ,
1> 5> 0 so small that for lt-t | < & the points xl(t) lie .
within spheres of radius r/10 of the points. xl"'xn+l' ‘This
being possible because of the previous lemma 1.
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Consider the convex combination of controllers u (t) =

co= g (E) + aun(t) . ¢ gty (8D, 2 > 0, T, = 1

(Note N 1) < 1) and the corresponding responses ix(t)
of & with initial data (0,x ). For each fixed t,lt-tll < A
these response end points x~(t) sweep out a surface section
S which lies celow the plane x° = p°‘byvconvexity,‘aboveior
on the plané x° = O because of the positive nature of ¥ and
intersect the line segment {0 £ x° £ p°, x=p} (see proof
of theorem 1). Hence G meets K(t) for It-t | €45 < 1.

We now consider the problem of existence of optimum
centrollers. .
Theorem 4 Consider the systenm E as above with compact restraint
set 0 = {ful fut | <1, i=1,2..,,mY<R"™, initial point (O,xo)eRn+l

at time T, and constant compact target set G = {x°,X10 £ xX° < B,

23} Tor g > 0. If there exists an admissible controllen u(t)- g
Steering ﬁO to G on t, < t < t, then there exists an optimum

controller (also admissible) steering 2 X to G in minimum time

duration t¥% - to.

Proocf If (O, X J€ G then t% = t and optimum control is not

required. So assume (O X, )¢ G and conslder the set of attain-
ability K(t ) for t, > t,. Since there is one controller
which steers (0, x,) to G the set K(t ) meets G for some

tl > t Define t* to be the greatest lower bound of all

times tl such that K(tl) meets G. By the continuous dependenee
of R(% 1) on tl the set of times for which K(t ) meets G is.

a closed set in RT. Hence t% is the first time K(t ). meets

G and therefore pick as the optimum controller uf(t),

t, £t £ t%, a controller which steers to

K(t*)(\ G.
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Ly’

The next theorem asserts that for optimum control we need only
consider points of the lower boundary of the set of attain-
ablility and therefore by theorem 2 extremal controllers.

A sufficiency condition is also included.

Theorem 5. Consider the system E as above with compact
rectangular restraint set Q, initial point (O,xo) at t_

and compact convex target set G = {xPx|0 < x° < B; xeG;

B > 0}. ILet u(t) be a minimal Time optimal controller
steering x*(t) from X, to G. Then u*(t) is extremal, that .
is, there exists a nonvanlshing adjoint response n(t) =
(no,n(t)) with 1 < O so that

A(6)B(t)ur(e) = Max {n(t)B(t)u}
ue

clmost always on [t_,t¥] with 1(t*) an outward normal of
K t%) at x¥(t*) on SK(t*) and n(t¥) satisfies the transver=
sality condition, namely, A(t*) 1s normal to a supporting
hyperplane T of G and the set of attainability R(t*) which
separates K(t*) from G. SR

lMoreover, if for each point [3] xeG there exists a .
nonmaximal controller G(t)Z Q so that on £ < t < = the
response xﬁ(t) initiating at X = xﬁ(Eo) is contained in G,
then when u(t) is an admissible extremal controller steering
' xb to G by means of a response satisfying the transversality
condition it 1s an optimum controller,
Proof By assumption there exists a controller steering x
_to G so G meets K(t*¥). Suppose G meets the interior of
“K(t*). This is impossible because then G meets the interior
of K(t) for |t-t*| < &, & > 0, by theorem 3 and this contra-
dicts the optimality of the controller. Hence 3G meets
dR(t*) so that the optimum controller must steer-to 3K(t*).,
We must show that it steers to a lower boundary point to con-
clude that it is extremal. This follows at once because
ﬁ(t) always first makes contact with G at a lower boundary
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roint as can be seen by considering how the compact set
K(t ) with convex lower surface moves with respect to the
set G. Thus if u%(t) is optimal it 1s extremal and by
theorem 2 there exlsts the nonvanishing adjolnt response
n(t) so that

n(t)B(t)u*(t) = Max n(t)B(t)u
. uefl .

i

where 7(t*) satisfies the transversality condition since G
and the lower boundery of K(t*) are convex they canbe
Separated by a supporting hypérplane T and we“choosefﬁ(t*)ﬁto
be normal to ™ and directed into the halfspace containing G..
When u(t) is an admissible extremal controller steering .
x To G and satisfying the transversality condition it
wust be an optimum controller if G has the property that
turough each point XeG there passes a nonmaximal response
which remains forever in G. Thils follows because once G and
RK(t) come together the interior of K(t) has a nonempty
intersection with G so that the transversality ocondition
can only be satisfied once and therefore there is only one
time, namely t¥, for which an extremal controller can steer

LSS,

to G and satisfy the transversality condition. Thus any such {;

extremal controller satisfying the transversality condition
is an optimum controller.
Q.E.D, ,
We have therefore reduced the problem of finding an
optimum controller for the approximation problem to that of
finding a solution to the two polnt boundary value problem 1
as given by the 2n+2 equations: ‘ '
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X = A.{E)x + B(t) Max {ﬁ(t)a(t)u}

uen .
. . s
A= 0 A(s) - ny S5 (x)
N, = O (n, < 0)

with boundary conditions i(to) = io, x(t*)e 3 G with {(t*)

an interior normal to G at x(t*).

3) An Example of Approximate Bounded Phase Coordinate Time

O
{

i T Mt aa
poimar vOoniloL

We shall consider a very simple example to-1llustrate some
of the theory of.the previous section. Consider a‘simple
mechanism with position coordinate x and veloeclty coordinate
y. Suppose i1t is desired to bring the mechanism to rest by
means of a thrust force u(t) whose magnitude is bidirectional
but limited to be less than 1 in magnitude and suppose the
velocity 1s not to exceed .6 in magnitude. That is, consider

the linear system

e

=y _»
u(t) | 3

Y

with Ju(t)l <1, A= {x¥y ||y] £ .63, x(o) = 10, a’ndAy(O) = 0.

-~ -
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Pick F(x,y) = 3(y - 3)°

O § o

for y >

=0 for |y < &
1 2 |

= 45(y + )% fory < -5

We shall later determine the parameter B > O so that the
strict bound on y is not exceeded, Problems in which the
bourd is soft are more easily handled since then we can
generally pick g ahead of time and in:a St:aightforward manner
solve the two point boundary value problem, Here we have
picked F(x,y) so that we are constraining the.responée even
boundary of A 1s exceeded in hiopes © :
1 strict bound on y. To solve this approximate'problem
1t is merely required that we £ind é solution of the

system:
x'= F(x,¥)
ey
¥y = Max {neu}
ue ~

1, =0 (1, < 0)
=0

Ny = -1p = M %—g—
with x°(o) 0, x(0) = 10, y(o) = 0, x°(tl) < B, x(tl) - o,
y(tl) 0 for some tl > 0. ’
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A simple calculation shows that picking g = .08,
n,(0) = -10, n,(0) = -1, 1,(0) ~ -.55 provides a time
optimal solution for this problem, A plot of this response
is given by figure 1. Note in this problem the exact ‘
optimunm solution was obtained, but in general one would pick
different F(x,y)'s to get better approximations.
L) Remarks on the approximate bounded phase coordinate problems
with integral cost .
As before consider the linear control process’
£) x = &{t)x + B{t)u(t)
satisfying the conditions stated at the beginning of section’
1. As a cost functional of control consider

clu) = g(x(T)) + [, {£o(x,8) +n (u t)}dt
. s
w.ere T = fixed time > t  and the real functions fo(x,t) and
h° (u,t) are continuously differentiable and f°(x t) is a
convex function of x for each t. .

The problem of optimal control 1s to pick an admissible
- controller u(t) on [t ,T] so that the response x,(t) of ¢
moves from X, to a target set BC R® at T, (G may be whole |
space) and minimizes C(u) with the entire response xu(t) " : R
contained is the closed convex restraint set A, '
' As before we introduce the convex differentiable function
F(x) satisfying the conditions | ‘

F(x) >0 if x £ A

=0 1f x € A

The approximation problem 1s obtained by adding F(x)

to the integrand of the cost functional C(u) to obtain‘a“

-~

new cost functional

' T : ' ‘ ‘
c, (u) = g(x(T)) + jto {20 (x,t) + AF(x) + n°(u,t)}ds

T o
= ft {£o(x,t) + ho(u,%)}dt,
(o]

B e
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here X > 0. If X\ is sufficlently larze then one would expect
that the contribution from the term A F(x) can be small only
if the response stays near A or withiﬁ'it‘ The approximation
problem is to find that controller u( ) which minimizes
X(u) and steers to GCR®
We shall assume that h°(u t) is convex in u for each t

or that the controller is bounded and h is a positive function

of u for each t. In either case the previous theory can be
applied after slight modification by noting that T°(x,t) =

= £9(x,t) + A F(x) is a convex function of x for each t since
both £° and F were convex functions and by noting the contri-
bution to xP(T) made by the terms h°(u;t) That is, the

-~ aans v

Ah‘ﬁ
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